
P a g e | 14

FCPIT VDS Saini

7. Control Structures

7.1 Decision making statements: if, nested if, if - else. Else if ladder

Decision making structures require that the programmer specify one or more conditions to be
evaluated or tested by the program, along with a statement or statements to be executed if the
condition is determined to be true, and optionally, other statements to be executed if the condition
is determined to be false.

Following is the general form of a typical decision making structure found in most of the
programming languages:

C++ programming language provides following types of decision making statements. Click the
following links to check their detail.

Statement Description

if statement An if statement consists of a boolean expression followed by
one or more statements.

if...else statement An if statement can be followed by an optional else statement,
which executes when the boolean expression is false.

switch statement A switch statement allows a variable to be tested for equality
against a list of values.

nested if statements You can use one if or else if statement inside another if or else
if statement(s).

nested switch statements You can use one swicth statement inside another switch
statement(s).

P a g e | 14

FCPIT VDS Saini

7. Control Structures

7.1 Decision making statements: if, nested if, if - else. Else if ladder

Decision making structures require that the programmer specify one or more conditions to be
evaluated or tested by the program, along with a statement or statements to be executed if the
condition is determined to be true, and optionally, other statements to be executed if the condition
is determined to be false.

Following is the general form of a typical decision making structure found in most of the
programming languages:

C++ programming language provides following types of decision making statements. Click the
following links to check their detail.

Statement Description

if statement An if statement consists of a boolean expression followed by
one or more statements.

if...else statement An if statement can be followed by an optional else statement,
which executes when the boolean expression is false.

switch statement A switch statement allows a variable to be tested for equality
against a list of values.

nested if statements You can use one if or else if statement inside another if or else
if statement(s).

nested switch statements You can use one swicth statement inside another switch
statement(s).

P a g e | 14

FCPIT VDS Saini

7. Control Structures

7.1 Decision making statements: if, nested if, if - else. Else if ladder

Decision making structures require that the programmer specify one or more conditions to be
evaluated or tested by the program, along with a statement or statements to be executed if the
condition is determined to be true, and optionally, other statements to be executed if the condition
is determined to be false.

Following is the general form of a typical decision making structure found in most of the
programming languages:

C++ programming language provides following types of decision making statements. Click the
following links to check their detail.

Statement Description

if statement An if statement consists of a boolean expression followed by
one or more statements.

if...else statement An if statement can be followed by an optional else statement,
which executes when the boolean expression is false.

switch statement A switch statement allows a variable to be tested for equality
against a list of values.

nested if statements You can use one if or else if statement inside another if or else
if statement(s).

nested switch statements You can use one swicth statement inside another switch
statement(s).

P a g e | 15

FCPIT VDS Saini

If Statement

An if statement consists of a boolean expression followed by one or more statements.

Syntax:
if(boolean_expression)
{

// statement(s) will execute if the boolean expression is true
}

If the boolean expression evaluates to true, then the block of code inside the if statement will be
executed. If boolean expression evaluates to false, then the first set of code after the end of the if
statement (after the closing curly brace) will be executed.

Example:
#include <iostream.h>

void main ()
{

int a = 10;

if(a < 20)
{

cout << "a is less than 20;" << endl;
}
cout << "value of a is : " << a << endl;
getch();

}
When the above code is compiled and executed,
it produces the following result:

a is less than 20;
value of a is : 10

If else Statement

An if statement can be followed by an optional else statement, which executes when the boolean
expression is false.

Syntax:

if(boolean_expression)
{

// statement(s) will execute if the boolean expression is true
}
else
{

// statement(s) will execute if the boolean expression is false
}

P a g e | 15

FCPIT VDS Saini

If Statement

An if statement consists of a boolean expression followed by one or more statements.

Syntax:
if(boolean_expression)
{

// statement(s) will execute if the boolean expression is true
}

If the boolean expression evaluates to true, then the block of code inside the if statement will be
executed. If boolean expression evaluates to false, then the first set of code after the end of the if
statement (after the closing curly brace) will be executed.

Example:
#include <iostream.h>

void main ()
{

int a = 10;

if(a < 20)
{

cout << "a is less than 20;" << endl;
}
cout << "value of a is : " << a << endl;
getch();

}
When the above code is compiled and executed,
it produces the following result:

a is less than 20;
value of a is : 10

If else Statement

An if statement can be followed by an optional else statement, which executes when the boolean
expression is false.

Syntax:

if(boolean_expression)
{

// statement(s) will execute if the boolean expression is true
}
else
{

// statement(s) will execute if the boolean expression is false
}

P a g e | 15

FCPIT VDS Saini

If Statement

An if statement consists of a boolean expression followed by one or more statements.

Syntax:
if(boolean_expression)
{

// statement(s) will execute if the boolean expression is true
}

If the boolean expression evaluates to true, then the block of code inside the if statement will be
executed. If boolean expression evaluates to false, then the first set of code after the end of the if
statement (after the closing curly brace) will be executed.

Example:
#include <iostream.h>

void main ()
{

int a = 10;

if(a < 20)
{

cout << "a is less than 20;" << endl;
}
cout << "value of a is : " << a << endl;
getch();

}
When the above code is compiled and executed,
it produces the following result:

a is less than 20;
value of a is : 10

If else Statement

An if statement can be followed by an optional else statement, which executes when the boolean
expression is false.

Syntax:

if(boolean_expression)
{

// statement(s) will execute if the boolean expression is true
}
else
{

// statement(s) will execute if the boolean expression is false
}

P a g e | 16

FCPIT VDS Saini

If the boolean expression evaluates to true, then the if block of code will be executed,
otherwise else block of code will be executed.

Example:
#include <iostream.h>

void main ()
{

int a = 100;

if(a < 20)
{

cout << "a is less than 20;" << endl;
}
else
{

cout << "a is not less than 20;" << endl;
}
cout << "value of a is : " << a << endl;
getch();

}

When the above code is compiled and executed, it produces the following result:
a is not less than 20;
value of a is : 100

The if...else if...else Statement:

An if statement can be followed by an optional else if...else statement, which is very useful to test
various conditions using single if...else if statement.

When using if , else if , else statements there are few points to keep in mind.
 An if can have zero or one else's and it must come after any else if's.
 An if can have zero to many else if's and they must come before the else.
 Once an else if succeeds, none of he remaining else if's or else's will be tested.

Syntax:
if(boolean_expression 1)
{

// Executes when the boolean expression 1 is true
}
else if(boolean_expression 2)
{

// Executes when the boolean expression 2 is true
}
else if(boolean_expression 3)
{

// Executes when the boolean expression 3 is true
}
else

P a g e | 16

FCPIT VDS Saini

If the boolean expression evaluates to true, then the if block of code will be executed,
otherwise else block of code will be executed.

Example:
#include <iostream.h>

void main ()
{

int a = 100;

if(a < 20)
{

cout << "a is less than 20;" << endl;
}
else
{

cout << "a is not less than 20;" << endl;
}
cout << "value of a is : " << a << endl;
getch();

}

When the above code is compiled and executed, it produces the following result:
a is not less than 20;
value of a is : 100

The if...else if...else Statement:

An if statement can be followed by an optional else if...else statement, which is very useful to test
various conditions using single if...else if statement.

When using if , else if , else statements there are few points to keep in mind.
 An if can have zero or one else's and it must come after any else if's.
 An if can have zero to many else if's and they must come before the else.
 Once an else if succeeds, none of he remaining else if's or else's will be tested.

Syntax:
if(boolean_expression 1)
{

// Executes when the boolean expression 1 is true
}
else if(boolean_expression 2)
{

// Executes when the boolean expression 2 is true
}
else if(boolean_expression 3)
{

// Executes when the boolean expression 3 is true
}
else

P a g e | 16

FCPIT VDS Saini

If the boolean expression evaluates to true, then the if block of code will be executed,
otherwise else block of code will be executed.

Example:
#include <iostream.h>

void main ()
{

int a = 100;

if(a < 20)
{

cout << "a is less than 20;" << endl;
}
else
{

cout << "a is not less than 20;" << endl;
}
cout << "value of a is : " << a << endl;
getch();

}

When the above code is compiled and executed, it produces the following result:
a is not less than 20;
value of a is : 100

The if...else if...else Statement:

An if statement can be followed by an optional else if...else statement, which is very useful to test
various conditions using single if...else if statement.

When using if , else if , else statements there are few points to keep in mind.
 An if can have zero or one else's and it must come after any else if's.
 An if can have zero to many else if's and they must come before the else.
 Once an else if succeeds, none of he remaining else if's or else's will be tested.

Syntax:
if(boolean_expression 1)
{

// Executes when the boolean expression 1 is true
}
else if(boolean_expression 2)
{

// Executes when the boolean expression 2 is true
}
else if(boolean_expression 3)
{

// Executes when the boolean expression 3 is true
}
else

P a g e | 17

FCPIT VDS Saini

{
// executes when the none of the above condition is true.

}

Example:
#include <iostream.h>

void main ()
{

int a = 100;

if(a == 10)
{

cout << "Value of a is 10" << endl;
}
else if(a == 20)
{

cout << "Value of a is 20" << endl;
}
else if(a == 30)
{

cout << "Value of a is 30" << endl;
}
else
{

cout << "Value of a is not matching" << endl;
}
cout << "Exact value of a is : " << a << endl;
getch();

}

When the above code is compiled and executed, it produces the following result:
Value of a is not matching
Exact value of a is : 100

C++ Nested Loops

It is always legal to nest if-else statements, which means you can use one if or else if statement
inside another if or else if statement(s).

Syntax:
if(boolean_expression 1)
{

// Executes when the boolean expression 1 is true
if(boolean_expression 2)
{

// Executes when the boolean expression 2 is true
}

}

P a g e | 18

FCPIT VDS Saini

You can nest else if...else in the similar way as you have nested if statement.

Example:
#include <iostream.h>

void main ()
{

int a = 100;
int b = 200;

if(a == 100)
{

if(b == 200)
{

cout << "Value of a is 100 and b is 200" << endl;
}

}

cout << "Exact value of a is : " << a << endl;
cout << "Exact value of b is : " << b << endl;
getch();

}

When the above code is compiled and executed, it produces the following result:
Value of a is 100 and b is 200
Exact value of a is : 100
Exact value of b is : 200

7.2 Switch

A switch statement allows a variable to be tested for equality against a list of values. Each value is
called a case, and the variable being switched on is checked for each case.

Syntax:

switch(expression){
case constant-expression :

statement(s);
break; //optional

case constant-expression :
statement(s);
break; //optional

default : //Optional
statement(s);

}

P a g e | 19

FCPIT VDS Saini

The following rules apply to a switch statement:

 The expression used in a switch statement must have an integral or enumerated type, or be
of a class type in which the class has a single conversion function to an integral or
enumerated type.

 You can have any number of case statements within a switch. Each case is followed by the
value to be compared to and a colon.

 The constant-expression for a case must be the same data type as the variable in the
switch, and it must be a constant or a literal.

 When the variable being switched on is equal to a case, the statements following that case
will execute until a break statement is reached.

 When a break statement is reached, the switch terminates, and the flow of control jumps to
the next line following the switch statement.

 Not every case needs to contain a break. If no break appears, the flow of control will fall
through to subsequent cases until a break is reached.

 A switch statement can have an optional default case, which must appear at the end of the
switch. The default case can be used for performing a task when none of the cases is true.
No break is needed in the default case.

Example:
#include <iostream.h>

void main ()
{

char grade = 'D';

switch(grade)
{
case 'A' :

cout << "Excellent!" << endl;
break;

case 'B' :
case 'C' :

cout << "Well done" << endl;
break;

case 'D' :
cout << "You passed" << endl;
break;

case 'F' :
cout << "Better try again" << endl;
break;

default :
cout << "Invalid grade" << endl;

}
cout << "Your grade is " << grade << endl;
getch();

}

This would produce the following result:
You passed
Your grade is D

P a g e | 19

FCPIT VDS Saini

The following rules apply to a switch statement:

 The expression used in a switch statement must have an integral or enumerated type, or be
of a class type in which the class has a single conversion function to an integral or
enumerated type.

 You can have any number of case statements within a switch. Each case is followed by the
value to be compared to and a colon.

 The constant-expression for a case must be the same data type as the variable in the
switch, and it must be a constant or a literal.

 When the variable being switched on is equal to a case, the statements following that case
will execute until a break statement is reached.

 When a break statement is reached, the switch terminates, and the flow of control jumps to
the next line following the switch statement.

 Not every case needs to contain a break. If no break appears, the flow of control will fall
through to subsequent cases until a break is reached.

 A switch statement can have an optional default case, which must appear at the end of the
switch. The default case can be used for performing a task when none of the cases is true.
No break is needed in the default case.

Example:
#include <iostream.h>

void main ()
{

char grade = 'D';

switch(grade)
{
case 'A' :

cout << "Excellent!" << endl;
break;

case 'B' :
case 'C' :

cout << "Well done" << endl;
break;

case 'D' :
cout << "You passed" << endl;
break;

case 'F' :
cout << "Better try again" << endl;
break;

default :
cout << "Invalid grade" << endl;

}
cout << "Your grade is " << grade << endl;
getch();

}

This would produce the following result:
You passed
Your grade is D

P a g e | 19

FCPIT VDS Saini

The following rules apply to a switch statement:

 The expression used in a switch statement must have an integral or enumerated type, or be
of a class type in which the class has a single conversion function to an integral or
enumerated type.

 You can have any number of case statements within a switch. Each case is followed by the
value to be compared to and a colon.

 The constant-expression for a case must be the same data type as the variable in the
switch, and it must be a constant or a literal.

 When the variable being switched on is equal to a case, the statements following that case
will execute until a break statement is reached.

 When a break statement is reached, the switch terminates, and the flow of control jumps to
the next line following the switch statement.

 Not every case needs to contain a break. If no break appears, the flow of control will fall
through to subsequent cases until a break is reached.

 A switch statement can have an optional default case, which must appear at the end of the
switch. The default case can be used for performing a task when none of the cases is true.
No break is needed in the default case.

Example:
#include <iostream.h>

void main ()
{

char grade = 'D';

switch(grade)
{
case 'A' :

cout << "Excellent!" << endl;
break;

case 'B' :
case 'C' :

cout << "Well done" << endl;
break;

case 'D' :
cout << "You passed" << endl;
break;

case 'F' :
cout << "Better try again" << endl;
break;

default :
cout << "Invalid grade" << endl;

}
cout << "Your grade is " << grade << endl;
getch();

}

This would produce the following result:
You passed
Your grade is D

P a g e | 20

FCPIT VDS Saini

Nested Switch

It is possible to have a switch as part of the statement sequence of an outer switch. Even if the case
constants of the inner and outer switch contain common values, no conflicts will arise.

C++ specifies that at least 256 levels of nesting be allowed for switch statements.

Syntax:
switch(ch1) {

case 'A':
cout << "This A is part of outer switch";
switch(ch2) {

case 'A':
cout << "This A is part of inner switch";
break;

case 'B': // ...
}
break;

case 'B': // ...
}

Example:
#include <iostream.h>
void main ()
{

int a = 100, b = 200;

switch(a) {
case 100:

cout << "This is part of outer switch" << endl;
switch(b) {

case 200:
cout << "This is part of inner switch" << endl;

}
}
cout << "Exact value of a is : " << a << endl;
cout << "Exact value of b is : " << b << endl;
getch();

}

This would produce the following result:
This is part of outer switch
This is part of inner switch
Exact value of a is : 100
Exact value of b is : 200

P a g e | 21

FCPIT VDS Saini

7.3 Loops and iteration: while loop, for loop, do - while loop, nesting of loops,
Break statement, Continue statement, Goto statement, Use of control
structures through illustrative programming examples.

There may be a situation, when you need to execute a block of code several number of times. In
general statements are executed sequentially: The first statement in a function is executed first,
followed by the second, and so on.

Programming languages provide various control structures that allow for more complicated
execution paths.

A loop statement allows us to execute a statement or group of statements multiple times and
following is the general from of a loop statement in most of the programming languages:

C++ programming language provides the following types of loop to handle looping requirements.
Click the following links to check their detail.

Loop Type Description

while loop Repeats a statement or group of statements while a given condition
is true. It tests the condition before executing the loop body.

for loop Execute a sequence of statements multiple times and abbreviates
the code that manages the loop variable.

do...while loop Like a while statement, except that it tests the condition at the end
of the loop body

nested loops You can use one or more loop inside any another while, for or
do..while loop.

P a g e | 21

FCPIT VDS Saini

7.3 Loops and iteration: while loop, for loop, do - while loop, nesting of loops,
Break statement, Continue statement, Goto statement, Use of control
structures through illustrative programming examples.

There may be a situation, when you need to execute a block of code several number of times. In
general statements are executed sequentially: The first statement in a function is executed first,
followed by the second, and so on.

Programming languages provide various control structures that allow for more complicated
execution paths.

A loop statement allows us to execute a statement or group of statements multiple times and
following is the general from of a loop statement in most of the programming languages:

C++ programming language provides the following types of loop to handle looping requirements.
Click the following links to check their detail.

Loop Type Description

while loop Repeats a statement or group of statements while a given condition
is true. It tests the condition before executing the loop body.

for loop Execute a sequence of statements multiple times and abbreviates
the code that manages the loop variable.

do...while loop Like a while statement, except that it tests the condition at the end
of the loop body

nested loops You can use one or more loop inside any another while, for or
do..while loop.

P a g e | 21

FCPIT VDS Saini

7.3 Loops and iteration: while loop, for loop, do - while loop, nesting of loops,
Break statement, Continue statement, Goto statement, Use of control
structures through illustrative programming examples.

There may be a situation, when you need to execute a block of code several number of times. In
general statements are executed sequentially: The first statement in a function is executed first,
followed by the second, and so on.

Programming languages provide various control structures that allow for more complicated
execution paths.

A loop statement allows us to execute a statement or group of statements multiple times and
following is the general from of a loop statement in most of the programming languages:

C++ programming language provides the following types of loop to handle looping requirements.
Click the following links to check their detail.

Loop Type Description

while loop Repeats a statement or group of statements while a given condition
is true. It tests the condition before executing the loop body.

for loop Execute a sequence of statements multiple times and abbreviates
the code that manages the loop variable.

do...while loop Like a while statement, except that it tests the condition at the end
of the loop body

nested loops You can use one or more loop inside any another while, for or
do..while loop.

P a g e | 22

FCPIT VDS Saini

While Loop

A while loop statement repeatedly executes a target statement as long as a given condition is true.
Syntax:
The syntax of a while loop in C++ is:
while(condition)
{

statement(s);
}

Here, statement(s) may be a single statement or a block of statements.

Thecondition may be any expression, and true is any non-zero value. The loop iterates while the
condition is true. When the condition becomes false, program control passes to the line
immediately following the loop.

Flow Diagram:

Here, key point of the while loop is that the loop might not ever run. When the condition is tested
and the result is false, the loop body will be skipped and the first statement after the while loop will
be executed.

Example:
#include <iostream.h>
void main ()
{

int a = 10;

while(a < 20)
{

cout << "value of a: " << a << endl;
a++;

}
getch();

}

When the above code is compiled and executed, it
produces the following result:
value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

P a g e | 22

FCPIT VDS Saini

While Loop

A while loop statement repeatedly executes a target statement as long as a given condition is true.
Syntax:
The syntax of a while loop in C++ is:
while(condition)
{

statement(s);
}

Here, statement(s) may be a single statement or a block of statements.

Thecondition may be any expression, and true is any non-zero value. The loop iterates while the
condition is true. When the condition becomes false, program control passes to the line
immediately following the loop.

Flow Diagram:

Here, key point of the while loop is that the loop might not ever run. When the condition is tested
and the result is false, the loop body will be skipped and the first statement after the while loop will
be executed.

Example:
#include <iostream.h>
void main ()
{

int a = 10;

while(a < 20)
{

cout << "value of a: " << a << endl;
a++;

}
getch();

}

When the above code is compiled and executed, it
produces the following result:
value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

P a g e | 22

FCPIT VDS Saini

While Loop

A while loop statement repeatedly executes a target statement as long as a given condition is true.
Syntax:
The syntax of a while loop in C++ is:
while(condition)
{

statement(s);
}

Here, statement(s) may be a single statement or a block of statements.

Thecondition may be any expression, and true is any non-zero value. The loop iterates while the
condition is true. When the condition becomes false, program control passes to the line
immediately following the loop.

Flow Diagram:

Here, key point of the while loop is that the loop might not ever run. When the condition is tested
and the result is false, the loop body will be skipped and the first statement after the while loop will
be executed.

Example:
#include <iostream.h>
void main ()
{

int a = 10;

while(a < 20)
{

cout << "value of a: " << a << endl;
a++;

}
getch();

}

When the above code is compiled and executed, it
produces the following result:
value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

P a g e | 23

FCPIT VDS Saini

For Loop

A for loop is a repetition control structure that allows you to efficiently write a loop that needs to
execute a specific number of times.

Syntax:
for (init; condition; increment)
{

statement(s);
}

Here is the flow of control in a for loop:
 The init step is executed first, and only once. This step allows you to declare and initialize

any loop control variables. You are not required to put a statement here, as long as a
semicolon appears.

 Next, the condition is evaluated. If it is true, the body of the loop is executed. If it is false,
the body of the loop does not execute and flow of control jumps to the next statement just
after the for loop.

 After the body of the for loop executes, the flow of control jumps back up to
the increment statement. This statement allows you to update any loop control variables.
This statement can be left blank, as long as a semicolon appears after the condition.

 The condition is now evaluated again. If it is true, the loop executes and the process repeats
itself (body of loop, then increment step, and then again condition). After the condition
becomes false, the for loop terminates.

Example:
#include <iostream.h>

void main ()
{

for(int a = 10; a < 20; a = a + 1)
{

cout << "value of a: " << a << endl;
}
getch();

}

When the above code is compiled and executed, it
produces the following result:

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

P a g e | 23

FCPIT VDS Saini

For Loop

A for loop is a repetition control structure that allows you to efficiently write a loop that needs to
execute a specific number of times.

Syntax:
for (init; condition; increment)
{

statement(s);
}

Here is the flow of control in a for loop:
 The init step is executed first, and only once. This step allows you to declare and initialize

any loop control variables. You are not required to put a statement here, as long as a
semicolon appears.

 Next, the condition is evaluated. If it is true, the body of the loop is executed. If it is false,
the body of the loop does not execute and flow of control jumps to the next statement just
after the for loop.

 After the body of the for loop executes, the flow of control jumps back up to
the increment statement. This statement allows you to update any loop control variables.
This statement can be left blank, as long as a semicolon appears after the condition.

 The condition is now evaluated again. If it is true, the loop executes and the process repeats
itself (body of loop, then increment step, and then again condition). After the condition
becomes false, the for loop terminates.

Example:
#include <iostream.h>

void main ()
{

for(int a = 10; a < 20; a = a + 1)
{

cout << "value of a: " << a << endl;
}
getch();

}

When the above code is compiled and executed, it
produces the following result:

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

P a g e | 23

FCPIT VDS Saini

For Loop

A for loop is a repetition control structure that allows you to efficiently write a loop that needs to
execute a specific number of times.

Syntax:
for (init; condition; increment)
{

statement(s);
}

Here is the flow of control in a for loop:
 The init step is executed first, and only once. This step allows you to declare and initialize

any loop control variables. You are not required to put a statement here, as long as a
semicolon appears.

 Next, the condition is evaluated. If it is true, the body of the loop is executed. If it is false,
the body of the loop does not execute and flow of control jumps to the next statement just
after the for loop.

 After the body of the for loop executes, the flow of control jumps back up to
the increment statement. This statement allows you to update any loop control variables.
This statement can be left blank, as long as a semicolon appears after the condition.

 The condition is now evaluated again. If it is true, the loop executes and the process repeats
itself (body of loop, then increment step, and then again condition). After the condition
becomes false, the for loop terminates.

Example:
#include <iostream.h>

void main ()
{

for(int a = 10; a < 20; a = a + 1)
{

cout << "value of a: " << a << endl;
}
getch();

}

When the above code is compiled and executed, it
produces the following result:

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

P a g e | 24

FCPIT VDS Saini

Do-While Loop

Unlike for and while loops, which test the loop condition at the top of the loop, the do...while loop
checks its condition at the bottom of the loop.

A do...while loop is similar to a while loop, except that a do...while loop is guaranteed to execute at
least one time.

Syntax:
do
{

statement(s);
}while(condition);

Notice that the conditional expression appears at the end of the loop, so the statement(s) in the
loop execute once before the condition is tested.

If the condition is true, the flow of control jumps back up to do, and the statement(s) in the loop
execute again. This process repeats until the given condition becomes false.

Example:
#include <iostream.h>

void main ()
{

int a = 10;

do
{

cout << "value of a: " << a << endl;
a = a + 1;

}while(a < 20);

getch();
}

When the above code is compiled and executed, it
produces the following result:
value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

P a g e | 24

FCPIT VDS Saini

Do-While Loop

Unlike for and while loops, which test the loop condition at the top of the loop, the do...while loop
checks its condition at the bottom of the loop.

A do...while loop is similar to a while loop, except that a do...while loop is guaranteed to execute at
least one time.

Syntax:
do
{

statement(s);
}while(condition);

Notice that the conditional expression appears at the end of the loop, so the statement(s) in the
loop execute once before the condition is tested.

If the condition is true, the flow of control jumps back up to do, and the statement(s) in the loop
execute again. This process repeats until the given condition becomes false.

Example:
#include <iostream.h>

void main ()
{

int a = 10;

do
{

cout << "value of a: " << a << endl;
a = a + 1;

}while(a < 20);

getch();
}

When the above code is compiled and executed, it
produces the following result:
value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

P a g e | 24

FCPIT VDS Saini

Do-While Loop

Unlike for and while loops, which test the loop condition at the top of the loop, the do...while loop
checks its condition at the bottom of the loop.

A do...while loop is similar to a while loop, except that a do...while loop is guaranteed to execute at
least one time.

Syntax:
do
{

statement(s);
}while(condition);

Notice that the conditional expression appears at the end of the loop, so the statement(s) in the
loop execute once before the condition is tested.

If the condition is true, the flow of control jumps back up to do, and the statement(s) in the loop
execute again. This process repeats until the given condition becomes false.

Example:
#include <iostream.h>

void main ()
{

int a = 10;

do
{

cout << "value of a: " << a << endl;
a = a + 1;

}while(a < 20);

getch();
}

When the above code is compiled and executed, it
produces the following result:
value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

P a g e | 25

FCPIT VDS Saini

Nested Loop

A loop can be nested inside of another loop. C++ allows at least 256 levels of nesting.

Syntax:
for (init; condition; increment)
{

for (init; condition; increment)
{

statement(s);
}
statement(s);

}
The syntax for a nested while loop statement in C++ is as follows:
while(condition)
{

while(condition)
{

statement(s);
}
statement(s);

}
The syntax for a nested do...while loop statement in C++ is as follows:
do
{

statement(s);
do
{

statement(s);
}while(condition);

}while(condition);

Example:
The following program uses a nested for loop to find the prime numbers from 2 to 100:
#include <iostream.h>

void main ()
{

int i, j;

for(i=2; i<100; i++) {
for(j=2; j <= (i/j); j++)

if(!(i%j)) break;
if(j > (i/j)) cout << i << " is prime\n";

}
getch();

}

P a g e | 26

FCPIT VDS Saini

This would produce the following result:
2 is prime
3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime

Loop Control Statements:

Loop control statements change execution from its normal sequence. When execution leaves a
scope, all automatic objects that were created in that scope are destroyed.

C++ supports the following control statements. Click the following links to check their detail.

Control Statement Description

break statement Terminates the loop or switch statement and transfers execution to
the statement immediately following the loop or switch.

continue statement Causes the loop to skip the remainder of its body and immediately
retest its condition prior to reiterating.

goto statement Transfers control to the labeled statement. Though it is not advised
to use goto statement in your program.

The Infinite Loop:

A loop becomes infinite loop if a condition never becomes false. The for loop is traditionally used
for this purpose. Since none of the three expressions that form the for loop are required, you can
make an endless loop by leaving the conditional expression empty.

P a g e | 27

FCPIT VDS Saini

#include <iostream.h>

void main ()
{

for(; ;)
{

printf("This loop will run forever.\n");
}
getch();

}
When the conditional expression is absent, it is assumed to be true. You may have an initialization
and increment expression, but C++ programmers more commonly use the for(;;) construct to signify
an infinite loop.

NOTE: You can terminate an infinite loop by pressing Ctrl + C keys.

Break Statement

The break statement has the following two usages in C++:

 When the break statement is encountered inside a loop, the loop is immediately terminated
and program control resumes at the next statement following the loop.

 It can be used to terminate a case in the switch statement

If you are using nested loops (i.e., one loop inside another loop), the break statement will stop the
execution of the innermost loop and start executing the next line of code after the block.

The syntax of a break statement in C++ is:
break;

Example:
#include <iostream.h>

void main ()
{

int a = 10;

do
{

cout << "value of a: " << a << endl;
a = a + 1;
if(a > 15)
{

break;
}

}while(a < 20);

getch();
}

P a g e | 27

FCPIT VDS Saini

#include <iostream.h>

void main ()
{

for(; ;)
{

printf("This loop will run forever.\n");
}
getch();

}
When the conditional expression is absent, it is assumed to be true. You may have an initialization
and increment expression, but C++ programmers more commonly use the for(;;) construct to signify
an infinite loop.

NOTE: You can terminate an infinite loop by pressing Ctrl + C keys.

Break Statement

The break statement has the following two usages in C++:

 When the break statement is encountered inside a loop, the loop is immediately terminated
and program control resumes at the next statement following the loop.

 It can be used to terminate a case in the switch statement

If you are using nested loops (i.e., one loop inside another loop), the break statement will stop the
execution of the innermost loop and start executing the next line of code after the block.

The syntax of a break statement in C++ is:
break;

Example:
#include <iostream.h>

void main ()
{

int a = 10;

do
{

cout << "value of a: " << a << endl;
a = a + 1;
if(a > 15)
{

break;
}

}while(a < 20);

getch();
}

P a g e | 27

FCPIT VDS Saini

#include <iostream.h>

void main ()
{

for(; ;)
{

printf("This loop will run forever.\n");
}
getch();

}
When the conditional expression is absent, it is assumed to be true. You may have an initialization
and increment expression, but C++ programmers more commonly use the for(;;) construct to signify
an infinite loop.

NOTE: You can terminate an infinite loop by pressing Ctrl + C keys.

Break Statement

The break statement has the following two usages in C++:

 When the break statement is encountered inside a loop, the loop is immediately terminated
and program control resumes at the next statement following the loop.

 It can be used to terminate a case in the switch statement

If you are using nested loops (i.e., one loop inside another loop), the break statement will stop the
execution of the innermost loop and start executing the next line of code after the block.

The syntax of a break statement in C++ is:
break;

Example:
#include <iostream.h>

void main ()
{

int a = 10;

do
{

cout << "value of a: " << a << endl;
a = a + 1;
if(a > 15)
{

break;
}

}while(a < 20);

getch();
}

P a g e | 28

FCPIT VDS Saini

When the above code is compiled and executed, it produces the following result:
value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15

Continue Statement

The continue statement works somewhat like the break statement. Instead of forcing termination,
however, continue forces the next iteration of the loop to take place, skipping any code in between.

For the for loop, continue causes the conditional test and increment portions of the loop to
execute. For the while and do...while loops, program control passes to the conditional tests.

Syntax:
continue;

Example:
#include <iostream.h>

void main ()
{

int a = 10;

do
{

if(a == 15)
{

a = a + 1;
continue;

}
cout << "value of a: " << a << endl;
a = a + 1;

}while(a < 20);

getch();
}

When the above code is compiled and executed, it produces the following result:
value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 16
value of a: 17
value of a: 18
value of a: 19

P a g e | 28

FCPIT VDS Saini

When the above code is compiled and executed, it produces the following result:
value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15

Continue Statement

The continue statement works somewhat like the break statement. Instead of forcing termination,
however, continue forces the next iteration of the loop to take place, skipping any code in between.

For the for loop, continue causes the conditional test and increment portions of the loop to
execute. For the while and do...while loops, program control passes to the conditional tests.

Syntax:
continue;

Example:
#include <iostream.h>

void main ()
{

int a = 10;

do
{

if(a == 15)
{

a = a + 1;
continue;

}
cout << "value of a: " << a << endl;
a = a + 1;

}while(a < 20);

getch();
}

When the above code is compiled and executed, it produces the following result:
value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 16
value of a: 17
value of a: 18
value of a: 19

P a g e | 28

FCPIT VDS Saini

When the above code is compiled and executed, it produces the following result:
value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15

Continue Statement

The continue statement works somewhat like the break statement. Instead of forcing termination,
however, continue forces the next iteration of the loop to take place, skipping any code in between.

For the for loop, continue causes the conditional test and increment portions of the loop to
execute. For the while and do...while loops, program control passes to the conditional tests.

Syntax:
continue;

Example:
#include <iostream.h>

void main ()
{

int a = 10;

do
{

if(a == 15)
{

a = a + 1;
continue;

}
cout << "value of a: " << a << endl;
a = a + 1;

}while(a < 20);

getch();
}

When the above code is compiled and executed, it produces the following result:
value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 16
value of a: 17
value of a: 18
value of a: 19

P a g e | 29

FCPIT VDS Saini

Goto Statement

A goto statement provides an unconditional jump from the goto to a labeled statement in the same
function.

NOTE: Use of goto statement is highly discouraged because it makes difficult to trace the control
flow of a program, making the program hard to understand and hard to modify. Any program that
uses a goto can be rewritten so that it doesn't need the goto.

Syntax:
goto label;
..
.
label: statement;

Where label is an identifier that identifies a labeled statement. A labeled statement is any
statement that is preceded by an identifier followed by a colon (:).

Example:
#include <iostream.h>

void main ()
{

int a = 10;

LOOP:do
{

if(a == 15)
{

// skip the iteration.
a = a + 1;
goto LOOP;

}
cout << "value of a: " << a << endl;
a = a + 1;

}while(a < 20);

getch();
}

When the above code is compiled and executed, it produces the following result:
value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 16
value of a: 17
value of a: 18
value of a: 19

P a g e | 29

FCPIT VDS Saini

Goto Statement

A goto statement provides an unconditional jump from the goto to a labeled statement in the same
function.

NOTE: Use of goto statement is highly discouraged because it makes difficult to trace the control
flow of a program, making the program hard to understand and hard to modify. Any program that
uses a goto can be rewritten so that it doesn't need the goto.

Syntax:
goto label;
..
.
label: statement;

Where label is an identifier that identifies a labeled statement. A labeled statement is any
statement that is preceded by an identifier followed by a colon (:).

Example:
#include <iostream.h>

void main ()
{

int a = 10;

LOOP:do
{

if(a == 15)
{

// skip the iteration.
a = a + 1;
goto LOOP;

}
cout << "value of a: " << a << endl;
a = a + 1;

}while(a < 20);

getch();
}

When the above code is compiled and executed, it produces the following result:
value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 16
value of a: 17
value of a: 18
value of a: 19

P a g e | 29

FCPIT VDS Saini

Goto Statement

A goto statement provides an unconditional jump from the goto to a labeled statement in the same
function.

NOTE: Use of goto statement is highly discouraged because it makes difficult to trace the control
flow of a program, making the program hard to understand and hard to modify. Any program that
uses a goto can be rewritten so that it doesn't need the goto.

Syntax:
goto label;
..
.
label: statement;

Where label is an identifier that identifies a labeled statement. A labeled statement is any
statement that is preceded by an identifier followed by a colon (:).

Example:
#include <iostream.h>

void main ()
{

int a = 10;

LOOP:do
{

if(a == 15)
{

// skip the iteration.
a = a + 1;
goto LOOP;

}
cout << "value of a: " << a << endl;
a = a + 1;

}while(a < 20);

getch();
}

When the above code is compiled and executed, it produces the following result:
value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 16
value of a: 17
value of a: 18
value of a: 19

